TOPIC
Mathematics

QUESTION
The form of the particular solution to the ordinary differential equation
\[\frac{d^2 y}{dx^2} - 4 \frac{dy}{dx} + 4 y = e^{2x} + \sin x \]
\[y(0) = 5 \]
\[\frac{dy}{dx} (0) = 6 \]
is
(A) \(Ax^2 e^{2x} + B \sin x + C \cos x \)
(B) \(Ae^{2x} + B \sin x + C \cos x \)
(C) \(Ax^2 e^{2x} + B \sin x \)
(D) \(Ae^{2x} + B \sin x \)

HINT
The characteristic equation has repeated roots. The particular part of the solution will have the form of the right hand side and its derivatives, unless they have the form of the homogeneous part of the solution.

The homogeneous part of the solution is of the form
\[y_h = k_1 e^{2x} + k_2 x e^{2x} \]
Corresponding to \(e^{2x} \) forcing function, the particular part would be
\[y_p = Ax^2 e^{2x} \]

ACKNOWLEDGEMENT
This question of the day was provided by the courtesy of Professor Autar Kaw of the University of South Florida from the book Fundamentals of Engineering Examination Sample Questions General Engineering.

If you disagree with the way the question is posed or disagree with the correct answer, please let me know.