TOPIC
Thermodynamics

QUESTION
The specific heat of graphite over a temperature range of 200K to 800K is given by

\[C = 0.05749T^2 - 31.25T + 4370 \]

where \(C \) is given in J/kg-K and temperature \(T \) is given in K. The amount of heat required in Joules to raise the temperature of 5 grams of graphite in an inert atmosphere from 400 K to 600K most nearly is

(A) 420
(B) 3309
(C) 3692
(D) 6316

HINTS
Note that the specific heat is not a constant but a function of temperature. The heat required, \(W \) is

\[W = m \int_{T_0}^{T_f} c \, dt \]

where

- \(m = \) mass,
- \(T_0 = \) initial temperature,
- \(T_f = \) final temperature,
- \(c = \) specific heat as a function of temperature, \(T \).

ACKNOWLEDGEMENT
This question of the day was provided by the courtesy of Professor Autar Kaw of the University of South Florida from the book Fundamentals of Engineering Examination Sample Questions General Engineering.